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Prozesse im Höchstvakuum mit Hilfe dieser Vor-
stellungen nicht zu erklären waren. I N O , W A T A N A B E 

und O G A W A deuteten die von ihnen beobachtete und 
in dieser Arbeit bestätigte Herabsetzung der Epi-
taxietemperatur bei der Spaltung der Unterlage im 
Hochvakuum (10~4 10 " 6 Torr) durch die 
Annahme, daß das Metall auf extrem reinen Ober-
flächen kondensiert wird :J. Eine Überprüfung der 
Ergebnisse im Höchstvakuum (10~9 Torr) zeigte 
aber, daß diese Erklärung nicht richtig sein kann. Es 
gelang den genannten Autoren beispielsweise nicht, 
vollständig orientierte Kupferfolien auf Steinsalz zu 
erhalten, obwohl bei Spaltung der Unterlagekristalle 
bei diesen niedrigen Drucken die Spaltflächen sicher 
frei von adsorbierten Stoffen sind 6. 

In dieser Arbeit konnte gezeigt werden, daß bei 
Anwendung der entwickelten Adsorptionsschicht-
hypothese 2 die auftretenden Effekte qualitativ ge-
deutet werden können. Insbesondere ist es möglich, 
den Verlauf der Orientierungskurve bei Variation 
aller Aufdampfparameter anzugeben. 

Den Herren H. W O L G A S T und P. K O C H danken wir 
herzlich für die sorgfältige Präparation und Vermes-
sung von Aufdampfsdiichten. Sie haben durch eine grö-
ßere Zahl von Versuchsreihen dazu beigetragen, die 
Richtigkeit der Vorstellungen über den Einfluß von Ad-
sorptionsschichten auf die Orientierung der Metallfolien 
nachzuweisen. 

6 S. INO, D. W A T A N A B E U. S. O G A W A , Vortrag auf dem Inter-
nationalen Kongreß für Kristallographie in Rom 1963 und 
private Mitteilung. 
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Relations between different cubic ligand field parameters A are derived in the framework of 
LCAO theory on the basis of group theory. From the symmetry of the ligand system and the trans-
formation properties of the d-orbitals, the values of the A parameters are related to the octahedral 
parameter. These ratios zf/zloh > partially including rr- and d-antibonding effects, are — | for the 
tetrahedron, — f for the cube, — \ for the tetradecahedron, + 5 for the tetrakishexahedron and 
triakisoctahedron when equal central atom ligand distances are considered. The proposed procedure, 
including also lower symmetries, is compared with the -^-method of JORGENSEN, P A P P A L A R D O and 
SCHMIDTKE giving it a more developed physical significance. 

Seit einiger Zeit ist das Verhältnis der Kristall-
feldparameter A — \0Dq, die nach Definition die 
Größe der Aufspaltung von d-Zuständen in kubischer 
Symmetrie angeben, für den Oktaeder- und Tetra-
ederfall bekannt. Aus elektrostatischen Störungsrech-
nungen von B A L L H A U S E N 2 ergibt sich im Falle glei-
cher Liganden und gleicher Abstände zwischen dem 
Zentralatom und den Liganden für beide Symmetrien 
die Beziehung 

^Td/^Oh = - £ • ( 1 ) 

Das negative Vorzeichen bedeutet, daß im Tetraeder 
die Folge der Einelektronenterme umgekehrt ist. 
Positives A heißt nach der Übereinkunft, daß der 

1 C . K . JORGENSEN, R . P A P P A L A R D O U. H . - H . SCHMIDTKE, J . 
Chem. Phys. 39, 1422 [1963]. 

2 C. J . BALLHAUSEN, K . Danske Videnskab. Selskab, Mat.-Fys. 
2 C. J . BALLHAUSEN, K . Danske Videnskab. Selskab, Mat.-Fys. 

dreifach entartete Term t?g (bzw. to beim Tetraeder) 
energetisch tiefer liegt als der andere Spaltterm eg 

(bzw. e) . In der Theorie der Molekülzustände (MO) 
spricht man in diesem Zusammenhang nicht von 
Spalttermen der d-Niveaus, sondern von antibinden-
den Einelektronenzuständen, die o- oder (und) 
rr-Bindungscharakter haben und die, da beide Theo-
rien die Symmetrie des Moleküls enthalten, dieselbe 
Terminologie (e, t2 etc.) besitzen. Auch das Experi-
ment zeigt, daß die Relation Gl. (1) gemeinhin er-
füllt ist 3. 

Die obige Beziehung ergibt sich ebenfalls aus 
der kürzlich von J O R G E N S E N et al. entwickelten 
^-Methode 4. Dieses Modell benutzt zur Bestim-

3 Vgl. C. K. JORGENSEN, Absorption Spectra and Chemical 
Bonding in Complexes, Pergamon Press, Oxford 1962, 
S.129 ff. 

4 C. K. JORGENSEN U. H. H. SCHMIDTKE, Z. Phys. Chem., N. F . 
38, 118 [1963], 
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mung der Bahnenergiedifferenzen (orbital energy 
differences) die Winkelanteile von Funktionen des 
Zentralatoms, die symmetrieadaptierten Liganden-
funktionen und die aus der MO-LCAO-Theorie und 
der MuLLiKENschen Näherung5 abgeleiteten An-
nahme, daß der o-Antibindungscharakter eines Ein-
elektronenmolekülzustandes dem Quadrat des Über-
lappungsintegrals zwischen Zentralatom- und Ligan-
denfunktion proportional ist. 

Da alle genannten Theorien im Rahmen der MO-
LCAO-Näherung (auch die Kristallfeldtheorie kann 
als eine ihrer Grenzfälle angesehen werden) die 
Punktsymmetrie des Moleküls und die Trans-
formationseigenschaften der Zentralatomfunktionen 
gleichermaßen enthalten, kann gefolgert werden, daß 
sich relative Aussagen, wie etwa die in Gl. (1 ) , audi 
aus gruppen- und darstellungstheoretischen Betrach-
tungen allein ergeben. In der vorliegenden Arbeit 
wird gezeigt, daß aus Symmetriebetrachtungen und 
aus den Matrizen der irreduziblen Darstellungen der 
Kugeldrehgruppe die obige Beziehung leicht abgelei-
tet werden kann und daß sie auch dann gilt, wenn 
7i- und <5-Bindungseffekte wirksam sind. Für andere 
kubische Symmetrien (Würfel, Kubo-Oktaeder, 
Tetrakishexaeder etc.) ergeben sich ähnliche Rela-
tionen. Daneben sollen Beziehungen zwischen der 
vorliegenden Arbeit und der ^-Methode, die zu-
nächst nur für o-Wechselwirkungen entwickelt wurde, 
aufgezeigt und diskutiert werden. Beide Verfahren 
erweisen sich formal besonders für niedere Symme-
trien und unter gewissen Bedingungen als identisch. 
Dadurch erhält die Z-Methode, die auf Grund von 
gewissen, die Rechnung vereinfachenden Modellvor-
stellungen konzipiert wurde, eine bessere physika-
lische Begründung. 

Bindungscharakter 

Um den in dieser Arbeit verwendeten Begriff des 
o-, TI- und ^-Bindungsdiarakters (oder -effekts) zu 
erläutern, beginnen wir zum besseren Verständnis 
mit dem einfachen, allgemein bekannten Fall einer 
Zerlegung von p-Funktionen in bestimmte Rich-
tungen. Abb. 1 erklärt die Zerlegung einer p-Funk-
tion bei Auszeichnung einer in der x y-Ebene ge-
legenen Richtung L und zeigt die Analogie zu einer 

5 R . S . M U L L I K E N , J . Phys. Chem. 5 6 , 295 [1952], 
6 M. E. ROSE, Elementary Theory of Angular Momentum, 

John Wiley, New York 1957. 

Abb. 1. Die Zerlegung einer p-Funktion in der x — y-Ebene 
bezüglich einer Richtung L und die analoge Vektorzerlegung. 

entsprechenden Vektorzerlegung. Der analytische 
Ausdrude hierfür lautet bekanntlich 

px = pa cos e — p.T sin £ . (2) 

Wir sagen nun, die Funktion px habe bezüglich der 
durch den Winkel £ gegebenen Richtung cos2 £ o- und 
sin2 £ 7i-Bindungscharakter. Die p^-Funktion zerlegt 
sich entsprechend nach 

py = p0 sin £ + p.-r cos £ . (3) 

Die aus Gl. (2) und (3) gebildete unitäre Matrix ist 
aber gleich der Reziproken einer Transformations-
matrix, die sich aus der Drehung des x, ?/-Achsen-
kreuzes um den Winkel £ im mathematisch positiven 
Sinn ergibt. Ensprechendes gilt für die dreidimensio-
nale Matrix, die bei Zerlegungen im Raum entsteht. 
Diese Matrix läßt sich leicht mit der dreidimensiona-
len Darstellung S 1 ' der Kugeldrehgruppe in Zu-
sammenhang bringen. Nach R O S E 6 liefert die durch 
die EuLERschen Winkel a, ß, y gegebene Drehung R 
(a, ß, y), angewandt auf die reelle Basis px , py , p2 , 
eine Matrix die bis auf eine Ähnlichkeitstrans-
formation = 11 I I - 1 mit der transponierten, 
von W I G N E R 7 definierten Darstellungsmatrix D\llm 

identisch ist. Die unitäre Transformation IX ist durch 
den Wechsel der Basis von komplexen zu reellen 
Funktionen gegeben (s. mathematischen Anhang). 
Gleichermaßen wird mit den d, f, . . .-Funktionen 
verfahren. Die Zerlegung der d-Funktionen durch 
Auszeichnung einer Richtung liefert den o-, TI- und 
(5-Bindungscharakter einer solchen Funktion. Die 
5-dimensionale Zerlegungsmatrix 3 2 findet man aus 
der Darstellungsmatrix durch Transposition, 
Ähnlichkeitstransformation mit U und anschließen-
der Inversion. Allgemein gilt 

3KS0") = $ ( / ) ' , (Transposition), 

= XX-1 Hßs^ 1t mit xps = Uip, 

3«> = [ « W « ) ] - 1 . (4) 

7 E. WIGNER, Gruppentheorie und ihre Anwendung auf die 
Quantenmechanik der Atomspektren, Vieweg, Braunschweig 

1931. 
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Daraus ergibt sich 

3 ( > } = [ i r 1 U ] - 1 = i r 1 s « > * i x , ( 5 ) 

da eine unitäre Matrix ist. Die Zerlegungsmatrix 
läßt sich also formal recht einfach durch die W I G N E R -

sche Darstellungsmatrix ausdrücken. In der Praxis 
bereitet die Durchführung der Ahnlichkeitstrans-
formation für j 2 wegen der höheren Dimensionen 
der Matrizen einige Schwierigkeiten. Im Falle der 
d-Funktionen geht man deshalb zweckmäßiger von 
den Transformationseigenschaften eines Tensors 
zweiten Grades mit den Komponenten T\j aus. Die 
Ausreduktion ergibt neben dem totalsymmetrischen 
und dem schiefen Tensor einen weiteren, dessen 
Komponenten eine irreduzible Darstellung induzie-
ren, die mit äquivalent ist. Bekanntlich sind die 
reellen fünf d-Funktionen Komponenten eines irre-
duziblen, symmetrischen Tensors zweiten Grades. 
Wählt man die Tensorkomponenten so, wie die 
Winkelanteile der d-Funktionen, nämlich 

V>2 = V5(Z*~ \X2- hy2)/r2, (6) 

V,3 = l / 1 5 xy/r-, = 1/15 xz/r2, = "|/15 y z/r2, 

so errechnet sich die Matrix mit Hilfe der Zer-
legungseigenschaften von x, y, z, die durch die 
Matrix ts- Gl. (32) im Anhang] gegeben sind. 
Die explizite Zerlegungsmatrix für d-Funktionen in 
Abhängigkeit von den EuLERschen Winkeln a, ß, y, 
die auch für andere Probleme interessant sein dürfte, 
ist im mathematischen Anhang angegeben. Durch sie 
wrird die Zerlegung der Funktionen Gl. (6) bezüglich 
einer durch 3, ß, y gegebenen Richtung angegeben, 
bei der zwei Komponenten o- und gleichzeitig (5-Bin-
dungen (die Quantenzahl / der Drehimpulskompo-
nente ist nicht definiert), zwei andere .i-Bindungen 
und die letzte Komponente reine ^-Bindungen bilden 
können. Die Quadrate der Matrixelemente z^m' sind 
ein Maß für den Hindungscharakter oder, wenn die 
Molekülfunktion antibindend ist, für den Anti-
bindungscharakter. Das Quadrat ergibt sich durch 
die Energieintegrale, die im Einelektronenbild die 
Funktion quadratisch enthält. Nichtdiagonalterme 
entfallen wegen der Orthogonalität der Funktionen, 
solange bei Ausreduktion von jede Rasse nur 
einmal vorkommt. Weiterhin gilt wegen der Normie-
rungsbedingung 

Y. zmin' = 1 für jedes m . (7) in 

Die Summe über die möglichen Bindungscharaktere 
ist also 1. Dabei muß auf die Einschränkung hin-
gewiesen werden, daß eine Funktion besonders mit 
höherem j bezüglich einer Richtung gleichzeitig Bin-
dungen verschiedenen Charakters eingehen kann. 
Diese Bindungen werden nur dann betätigt, wenn 
der Bindungspartner besetzte Funktionen passender 
Symmetrie anbieten kann. 

Soweit die Betrachtung der Eigenschaften der 
Zentralatomfunktion. Wenden wir uns nun ihrer 
Umgebung zu. Bisher haben wir nur eine Richtung 
ausgezeichnet. Gehen wir jetzt über zu dem Fall 
mehrerer solcher Richtungen, wie es für die Theorie 
der Komplexverbindungen interessant ist. Die Frage, 
welche Funktionen bei gegebener Koordinationszahl 
und Symmetrie kombinieren können, beantwortet die 
Gruppentheorie. In den Tabellen von E I S E N S T E I N 8 

sind nicht nur die irreduziblen Darstellungen an-
gegeben, die durch s-, p-, cl- und f-Funktionen bei 
Reduktion der Symmetrie induziert werden, sondern 
es sind auch die o- und rr-Funktionen des Liganden-
systems ausreduziert. Tab. 1 stellt eine solche Reduk-
tionstabelle für das Oktaeder (Gruppe Oh , Koordi-
nationszahl K.Z. = 6) dar. Am Beispiel der d-Elek-

a l g a 2 g tlg tag am a-2u eu t l u t2u 

s 1 0 0 0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0 1 0 
d 0 0 1 0 1 0 0 0 0 0 
f 0 0 0 0 0 0 1 0 1 1 
a 1 0 1 0 0 0 0 0 1 0 
71 0 0 0 1 1 0 0 0 1 1 

Tab. 1. Reduktionstabelle für die Gruppe Oh und K.Z . = 6. 

tronen ist ersichtlich, daß die beiden e^-Funktionen 
„reine" o-Bindungen und die drei t^g-Funktionen 
„reine" rr-Bindungen bilden. Unter „rein" wird hier 
verstanden, daß die ep-Zustände keine rr-Bindungs-
anteile, die ta^-Zustände keine o-Bindungsanteile ent-
halten. Beide können jedoch noch 6-Bindungen ein-
gehen, was aus der Tabelle nicht ersichtlich ist. Beim 
Würfel (Tab. 2) enthalten die t^g-Funktionen o- und 
7r-Bindungsanteile, die e^-Funktionen sind dagegen 

a lg a2g eg tlg t2g aiu »2u eu tlu t2u 

a 1 0 0 0 1 0 1 0 1 0 
71 0 0 1 1 1 0 0 1 1 1 

Tab. 2. Reduktionstabelle für die Gruppe Oh und K.Z . = 8 
nach EISENSTEIN 8 . 

8 J . C . EISENSTEIN, J. Chem. Phys. 2 5 , 142 [ 1 9 5 6 ] . 
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nur rr-bindend. Andere Fälle werden später unter 
den verschiedenen Symmetrien gesondert diskutiert. 

Damit ist die Frage geklärt, welche Bindungsarten 
wir für eine Symmetrie und Koordinationszahl zu 
erwarten haben und welcher irreduziblen Darstellung 
(Rasse) sie angehören. Weiterhin ist zu untersuchen, 
wieviele Ligandenfunktionen gegebener Rasse mit 
den Zentralatomfunktionen kombinieren. Beim Okta-
eder treten bei d-Elektronen jeweils nur N = 4 
Ligandenfunktionen an Stelle der möglichen 6(K.Z.) 
mit den t2g- und eg-Funktionen des Zentralatoms in 
Wechselwirkung, und zwar in gleicher Weise. Zum 
Beispiel kombiniert die Funktion tp3 = |/15 x y/r2 

[Gl. (6) ] nur mit .T-Ligandenfunktionen, die in den 
vier Zentren auf der x, «/-Ebene liegen. Gleiches gilt 
für die Funktion ipt , nur daß es sich hier um 
o-Ligandenfunktionen handelt. Die Funktion xp2 

kombiniert zwar mit allen 6 Ligandenfunktionen, 
jedoch in unterschiedlicher Weise, wie die Symmetrie-
funktion zu eg zeigt 

(1/1/3) K + o2 - i a3 - h o4 - i o5 - b Ö6) (8) 

(bei Vernachlässigung der Liganden-Liganden-Über-
lappung). Ihr a-Bindungscharakter ist jedoch wegen 
der Entartung mit ip1 der gleiche. Infolgedessen defi-
nieren wir die Kombinationszahl N der Liganden-
funktionen, die mit den Zentralfunktionen gegebener 
Rasse gleichartig kombinieren, stets als deren Mini-
mum. Für das Oktaeder ergibt sich sowohl für den 
Zustand eg als auch t2g N = 4. Beim Würfel sind die 
entsprechenden Werte N = 8 für eg und t2g. Da die 
Zerlegung der Funktion mit Hilfe der Matrizen 3^ 
bezüglich aller Koordinationsstellen bei kubischer 
Symmetrie gleichartig erfolgt, muß der oben defi-
nierte Bindungscharakter bezüglich eines Zentrums 
einfach mit N multipliziert werden, um den gesamten 
Bindungs- oder Antibindungseffekt für alle Zentren 
zu erhalten. Damit werden Ligandenwechselwirkun-
gen untereinander vernachlässigt. 

Somit ist das vorliegende Verfahren definiert, und 
wir können als Beispiel nun spezielle Symmetrien 
diskutieren. 

Tetraedersymmetrie T<i 

Der Reduktionstabelle (Tab. 3) für tetraedrische 
Koordination entnehmen wir, daß aus den d-Spalt-
termen Molekülfunktionen resultieren, die einmal 
reine ^-Bindungen (e) , das andere Mal o- und 
jz-Bindungsanteile (t2) enthalten. Da es sich bei 

ai ao e ti t2 
s 0 0 0 0 
p 0 0 0 0 1 
d 0 0 1 0 1 
f 1 0 0 1 1 
a 1 0 0 0 1 
71 0 0 1 1 1 

Tab. 3. Reduktionstabelle für die Gruppe T j und K.Z. = 4. 

den Ligandenfunktionen im wesentlichen um anti-
bindende Zustände handelt, erwarten wir die Niveaus 
mit o-Bindungsanteilen im Termschema höher als 
solche mit reinem .T-Bindungsanteil. Nach der in der 
Einleitung gegebenen Festsetzung ergibt sich im 
Falle des Tetraeders also ein negativer Kristallfeld-
parameter A. Wenden wir uns nun der Frage zu, wie 
groß die o- und ^i-AntibindungsefTekte für Funk-
tionen der Rasse t2 sind. Dazu zerlegen wir die fünf 
d-Funktionen Gl. (6) in der oben angegebenen 
Weise. Führen wir etwa eine Zerlegung 3 ^ mit dem 
Winkelsatz a = — TI)4, ß = TI/2, y = £ durch, der einer 
Drehung der «/-Achse in Richtung der Tetraederecke 
No. 1 (s. Abb. 2) entspricht, ergibt sich nach Gl. (33) 
folgende Matrix 

V5 -

Abb. 2. Der Würfel und 
ein einbeschriebenes Te-
traeder (K.Z. = 4), so daß 
sich ihre Symmetrieachsen 
in identischer Lage befin-

den. 

3 < 2 ) ( a = - j i / 4 , ß = rrj-2, ;•-=£! = 

° VI VI 
-VF » » 

1/ 3 j |/2 0 0 ( 9 ) 

VÄ-i/i y i 
-Vä Vi -V i 

Diese Matrix ist in folgender Weise zu interpretie-
ren: Die ersten beiden Reihen gehören zu den 
e-Funktionen, die anderen drei zu den t2-Funktionen. 
Die Elemente in den Spalten ergeben quadriert den 
Bindungscharakter für die jeweilige Funktion. Expli-
zite bedeutet etwa die vierte Reihe die Zerlegung in 
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Tensorkomponenten: 

V15 x z/r* = - l { ' f j 

+ yj8{l715xy'l*-2)- 1/3 {Vl5x'z'/r*} 

+ { V ^ y z ' / r * } . ( 1 0 ) 

Die Funktion x'2-y'2 hat bezüglich des Punktes 1 von 
Abb. 2 o- und gleichzeitig (3-Bindungs- oder Anti-
bindungscharakter, die Funktionen x'y' und y'z 
haben reinen rr-Bindungs-, und x z hat ^-Bindungs-
charakter. Die erste und zweite Spalte der Matrix 
Gl. (9) ergeben 0- und d-Bindungseffekte, die 3. und 
5. Spalte n-Bindungseffekte, die 4. Spalte reine ^-Bin-
dungen. Der o-Antibindungseffekt für die t2-Funk-
tionen ist also f , für die eg-Funktionen ist er er-
wartungsgemäß gleich Null. Die rr-Antibindungs-
effekte summieren sich für die t2-Funktionen ent-
sprechend zu i f + i = 15 für die eg-Funktionen er-
gibt sich | . Wie ersichtlich, sind die Quadrate der 
Matrixelemente für Funktionen gegebener Rasse 
nicht alle gleich. Das hat Orthogonalitätsgründe. 
Wegen der Entartung der zu derselben irreduziblen 
Darstellung gehörenden Funktionen müssen alle Bin-
dungs- oder Antibindungseffekte gleich sein. Es läßt 
sich auch leicht zeigen, daß die Linearkombination 
der ersten beiden Glieder der 2. Zeile von Gl. (9) 

YU Vl25 (x'2 - y'2) /r2 (z'2 - - h-y"2) ^ 

in der Tat eine (^-Funktion ist. In ähnlicher Weise 
kann man die dritte Reihe der Matrix interpretieren. 
Ebenfalls ist leicht nachzuprüfen, daß Zerlegungen 
durch Drehung der Achsen in andere Tetraederecken 
gleiche oder äquivalente Matrizen ergeben, was sich 
auch aus Symmetriegründen ergeben muß. Die Zer-
legung in ihre Komponenten erfolgt also für alle 
Funktionen bezüglich aller Koordinationspunkte in 
gleicher Weise. Zur Ermittlung des gesamten Bin-
dungscharakters ist mit der oben definierten Zahl N 
der Ligandenfunktionen zu multiplizieren, die mit 
den Zentralfunktionen kombinieren. Sie ist für o-
und 7r-Bindungen jeweils TV = 4 (vgl. die Symmetrie-
funktionen bei W O L F S B E R G und H E L M H O L Z 9 ) und ist 
damit der entsprechenden Zahl des Oktaeders gleich. 
Hierdurch erhalten die Matrixelemente Gl. (9) eine 

9 M. W O L F S B E R G U. L. H E L M H O L Z , J. Chem. Phys. 20. 8 3 7 

[1952]. 

zusätzliche Bedeutung. Die Quadrate dieser Elemente 
repräsentieren damit gleichzeitig das Verhältnis der 
gesamten Antibindungseffekte für das Tetraeder im 
Vergleich zum Oktaeder. Es ergibt sich also bei Be-
tätigung von reinen ö-Bindungen: 

(11) 

Nach der MO-Definition des Kristallfeldparameters 
A, der gleich der Energiedifferenz von antibindenden 
g*- und .T*-Bahnen ist, gilt für das Oktaeder 

A l g = { o * - n * ) N ( 1 2 ) 

(mit G*, 71* bezeichnen wir gleichzeitig die Bahn-
energien — orbital energies). Entsprechend wird bei 
Bildung von lockernden o- und rr-Bindungen für das 
Tetraeder nach Gl. (9) 

AYD = - (| O* + F - F JI*) N = - $ (O* - **) N , 

( 1 3 ) 

so daß auch unter Berücksichtigung von rr-Anti-
bindungseffekten der Faktor — 4 erhalten bleibt. 
Gleiches gilt auch für (^-Bindungen. Wenn wir gleiche 
Kombinationszahlen N für e- und t2-Funktionen vor-
aussetzen, so zeigt es sich, daß zwar die Differenz 
aus der reinen (^-Komponente nach Spalte 4 der 
Matrix Gl. (9) Null ergibt, jedoch erhalten wir für 
^-Antibindungseffekte, die aus Spalte 1 und 2 mit 
den o-Bindungen gemeinsam resultieren, wieder den 
Faktor — Damit gilt die Gleichung 

A°Tf 6IAZZ'Ö=-$ (14) 

allgemein bis zur höchst möglichen Bindungsform, 
die eine d-Atomfunktion zu bilden vermag. Zum glei-
chen Ergebnis kommt eine erweiterte ^-Methode 10. 

W ürfel, Tetrakishexaeder, Triakisoktaeder 

Mit den Ergebnissen, die wir bei der Diskussion 
des Tetraeders gewonnen haben, lassen sich nun 
leicht die entsprechenden Kristallfeldparameter für 
den Würfel (K.Z = 8 ) , das Tetrakishexaeder und das 
Triakisoktaeder (K.Z. = 14) , letztere unter der Vor-
aussetzung gleicher Ligandenabstände, ableiten. Den 
Würfel können wir als zwei ineinandergestellte Tetra-
eder betrachten (s. Abb. 2 ) . Die zugehörige Punkt-
gruppe ist Oh . Aus Tab. 2 ist ersichtlich, daß die 
eg-Zustände TX-, die t2g ebenso wie beim Tetraeder 
o- und n-Charakter haben. Die Zerlegungsmatrizen 

10 C. K . JORGENSEN U. C. S C H A E F F E R , Mol. Phys., im Druck. 
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sind natürlich dieselben; nur die Kombinations-
zahlen AV sind, wie oben ausgeführt, für eK- und 
t2g-Bahnen doppelt so hoch wie beim Tetraeder und 
Oktaeder. Damit ergibt sich unter Berücksichtigung 
aller möglichen Antibindungseffekte 

^ w M ) h = - f A V V 0 h = - f . (15) 
Das Tetrakishexaeder und das Triakisoktaeder 

(K.Z. = 14, Abb. 3 a und b) gehören zur Punkt-
gruppe Oh . In beiden Fällen sind sowohl die eg- als 
die t^g-Funktionen O-, TI- und (3-bindend. Man kann 

Abb. 3. Tetrakishexaeder (a) und Triakisoktaeder (b) 
(K.Z. = 14). 

die Körper sich zusammengesetzt denken durch In-
einanderstellen eines Würfels und eines Oktaeders. 
Im allgemeinen ist die Koordination jedoch zwei-
parametrig, da die Entfernung vom Schwerpunkt zu 
den Würfel- bzw. Oktaederecken verschieden groß 
sein kann. Für den Sonderfall gleicher Abstände läßt 
sich ebenfalls eine Verhältnisgleichung angeben. Be-
trachten wir o- und ^-Antibindungseffekte gleich-
zeitig, so ergibt die Bahnenergie mit den Kombina-
tionszahlen N = 4 für die Oktaeder- und N = 8 für 
die Würfelecken 

Eeg = 4 o* + 8 § Tl* , 
£ t 2 g = 4 TT* + 8 f -T* + 8 f G* . 

Der Ligandenfeldparameter für das Tetrakishexaeder 
oder Triakisoktaeder ist dann 

^Tkh = Eeg - Et,g = i (4 o* - 4 TI*) . (16) 
Mit Hilfe von Gl. (12) ergibt sich damit 

^Tkh/^Oh = + i . (17) 
Für (3-Bindungseffekte lassen sich ähnliche Über-

legungen anstellen. Wir wollen jedoch darauf nicht 
näher eingehen, da diese, wenn sie tatsächlich auf-
treten, ohnehin klein sind. Bei ungleichen Abständen 
zwischen Zentralatom-Ligand für den Würfel- und 
Oktaederteil des Tetrakishexaeders und Triakisokta-
eders ergibt sich entsprechend 

^Tkh/^Oh = 1 - f ( f f w - ^ w ) / ( t f o h - ^0h) • ( 1 8 ) 

Für den Sonderfall 

(0*y - TZ*y)/(<J*h - 7l*h) = | 

ist der Kristallfeldparameter /lTkh = 0 ; es liegt dann 
eine zufällige Entartung der eg- und tog-Funktionen 
vor, oder man sagt, die Symmetrie ist bezüglich der 
d-Funktionen pseudosphärisch. 

Kubo-Oktaeder 

Das Kubo-Oktaeder (Tetradekaeder) gehört eben-
falls zur Punktgruppe 0^ , die Koordinationszahl ist 
K.Z. = 12 (s .Abb. 4 ) . Nach der Reduktionstabelle 
(Tab. 4) haben beide d-Spaltterme e g , t2g o- und 
.T-Antibindungscharakter. 

Abb. 4. Das in einen Wür-
fel einbeschriebene Kubo-

Oktaeder (K.Z. = 12). 

a ig a2g eg tig t 2 g am a2u eu t lu t2u 

a 1 0 1 0 1 0 0 0 1 1 
Tl 0 1 1 2 1 0 1 1 2 1 

Tab. 4. Reduktionstabelle für das Kubo-Oktaeder 
nach L I E H R N . 

Die Zerlegungsmatrix Gl. (33) im Anhang liefert 
für die Winkel a = 0, ß = —n/4, 7 = 0, wodurch die 
z-Achse in Richtung des Punktes 3 in Abb. 4 gedreht 
wird, 

e g : V5 ( z 2 - i * 2 - by2)/r* = (19) 
1/3 j J/15 {x'2_y'2)/r2 | + 1 {V5(z>2_ LX>2 

-ky'2)/r2}+ V*{Vl5x'z'/r2} . 

Der o-Antibindungseffekt ist also bezüglich einer 
Richtung T3g- + ^ = ^ . Da die t2g-Funktionen jeweils 
mit vier Koordinationsstellen voll in o-Wechsel-
wirkung treten, ergibt sich mit den Kombinations-
zahlen N = 4 für t2g und N = 8 für eg für das Kubo-
Oktaeder 

^Ko=i -8o*~l-4o*= -2o* (20) 

11 A. D. LIEHR, Progr. Inorg. Chem. 4, 455 [1962]. 
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und ^ K o / ^ o h = — 2 0 * / 4 0* = — 2 • (21) 

Die Frage, ob jt- und ö-Antibindungseffekte den glei-
chen Faktor wie in Gl. (21) ergeben, läßt sich wegen 
der fehlenden Linearkombinationen der Liganden-
funktionen für solche Wechselwirkungen nicht ohne 
weiteres beantworten. 

Symmetrien von der Art eines Kubo-Oktaeders 
mit der Koordinationszahl K.Z. = 12 sind durch Ver-
bindungen AB3 (AuCug-Typ) realisiert12. Bei metal-
lischen Elementen liegen Kubo-Oktaeder in kubisch 
dichtesten Kugelpackungen vor. Ebenso ist in UB12 

und ZrB12 kubo-oktaedrische Koordination beobach-
tet worden 13. 

Rhombendodekaeder 

Das Rhombendodekaeder (K.Z. = 14) ist ein wei-
terer Fall eines zweiparametrigen kubischen Körpers 
der Symmetrie Oh. Sechs Punkte liegen auf den 
Oktaederpositionen, die acht weiteren in anderer 
Entfernung zum Zentralatom auf den Mitten der 
halben Raumdiagonalen des zugehörigen Würfels 
(vgl. Abb. 5 ) . Wegen der ungleichen Abstände 

Abb. 5. Rhombendodekaeder 
(K.Z. = 14). 

zu den Liganden lassen sich im Rahmen der vor-
liegenden Theorie keine quantitativen Aussagen 
machen. Sowohl eg- als auch t2g-Funktionen haben 
o- und .T-Antibindungscharakter. Vernachlässigen Avir 
die n-Bindungseffekte, so erhält man nach dem oben 
dargelegten Verfahren 

£ e g = 4 - O o h , £t2g = 8 I er w , 

4 l D = £e B - E t a , = 4 ( O o h ~ f <Tw). ( 2 2 ) 

Da das Verhältnis der Abstände vom Zentralatom 
zur Würfel- bzw. Oktaederkoordinationsstelle h ] /3 
ist, gilt 

Wir dürfen also annehmen, daß im Rhombendodeka-
eder die t9g-Niveaus wenig stärker antibindend sind 
als die eg-Zustände. Das heißt 

^ R D < 0 und klein. 

Rhombendodekaedrische Koordination ist in der 
Theorie der Borane von Interesse 14' 15. 

Niedere Symmetrie 

Die hier diskutierte Methode läßt sich prinzipiell 
auch auf Systeme niederer Symmetrie anwenden. 
Jedoch zeigt es sich, daß entweder die Interpretation 
der Zerlegungsmatrizen zunehmend schwieriger wird 
oder die Funktionen verschiedenartig mit den Ligan-
denfunktionen kombinieren, so daß die Heran-
ziehung symmetrischer Ligandenfunktionen in expli-
ziter Form erforderlich wird. Wir wollen die Ver-
hältnisse am Beispiel der Symmetrie D;^ mit K.Z. = 5 
(trigonale Bipyramide) studieren, für die eine Dis-
kussion mit Hilfe der .^-Methode schon vorliegt4. 
Aus der EiSENSTEiNschen Beduktionstabelle 8 (Tab. 5) 

ai' e' ai" a2" e" 

s 1 0 0 0 0 0 
p 0 0 1 0 1 0 
d 1 0 1 0 0 1 
f 1 1 1 0 1 1 
a 2 0 1 0 1 0 
71 0 1 2 0 1 2 

Tab. 5. Reduktionstabelle für die trigonale Bipyramide, 
Gruppe D;3h, K.Z. = 5. 

ist ersichtlich, daß die d-Spaltterme a / reinen 
a-Charakter, e' o- und TI- und e " nur .T-Antibindungs-
charakter haben. Die d-Funktionen aus Gl. (6) trans-
formieren sich mit der durch Abb. 6 gegebenen An-

Abb. 6. Trigonale Bipyramide 
(K.Z. = 5) . 

12 P. NIGGLI, Lehrbuch der Mineralogie und Kristallchemie, 
Gebr. Borntraeger Verlag, Berlin-Zehlendorf 1941, S. 295. 

1 3 L R . C A N O N U . G . H . D U F F E Y , J . C h e m . P h y s . 3 5 , 1 6 5 7 [ 1 9 6 1 ] . 

14 R. HOFFMANN U. W. N . LIPSCOMB, J . Chem. Phys. 36, 2179 
[1962] , 

15 R. HOFFMANN U . M . GOUTERMAN, J . Chem. Phys. 36, 2189 
[1962]. 
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Ordnung der Koordinaten nach den irreduziblen Dar-
stellungen 

a / : Wi ; e ' : W2 , W3 5 e " : Wi » Vs • (23) 

Nach Tab. 5 gibt es zwei Ligandenfunktionen der 
Symmetrie a / . Eine, die Funktionen an den Punk-
ten 4 und 5 in Abb. 6 linear kombiniert und nur 
o-antibindend ist, und eine andere, die Funktionen 
der Zentren 1, 2, 3 verknüpft und o- und (5-anti-
bindend ist. Aus der Störungstheorie folgt, daß beim 
Kombinieren mehrerer Funktionen gleicher Rasse 
mit der Zentralfunktion einfach die Summe der Bin-
dungseffekte für das Gesamtsystem anzusetzen ist. 
Die Funktion in Gl. (23) kombiniert mit den 
beiden Punkten 4 und 5 in einfachen o-Wechsel-
wirkungen, bezüglich der Punkte 1, 2, 3 ergibt eine 
oben beschriebene Zerlegung (a = 0, ß = Ji/2, 7 = 0) 

¥1= - HV5(z'2- hx'2-hy'2)/r2} 

+ f l^(x'2-y'2)/r2}. (24) 

Der o-Antibindungscharakter ist also ^ . Mit den 
Kombinationszahlen NIT 5 = 2 und NLT 2,3 = 3 wird 
der gesamte o-Antibindungscharakter des Komplexes 
für 

a / : < ' = i -3 + 1 - 2 = V • (25) 
Betrachten wir nun die e -Funktionen, so kommt die 
schon erwähnte Schwierigkeit hinzu, daß die Zentral-
funktionen wegen der niederen Symmetrie verschie-
den mit den Ligandenfunktionen kombinieren. Es ist 
also nötig, die explizite Symmetriefunktion der 
Ligandenatomfunktionen zu berücksichtigen. Sie lau-
tet etwa "j/2/3 (o3 — w o t — ^ o 2 ) . Eine Zerlegung mit 
a = nj3, ß = y = 0 liefert 

-HVlSxy'/r2}. (26) 

Die Funktion hat also bezüglich Punkt 3 in Abb. 6 
f o- und ^ sr-Antibindungscharakter. Da Punkt 3 voll 
und Punkt 1 und 2 nur je zu ^ mit der Zentralfunk-
tion kombinieren, wird der gesamte o-Antibindungs-
charakter des Komplexes für 

e ' : oe*, = ! ( l + i + i ) = f . (27) 

Das Verhältnis der o-Antibindungscharakter von a / 
in Gl. (25) und e in Gl. (27) ergibt sich also zu 

< 4 - / < ^ ' = V , ( 2 8 ) 

ein Ergebnis, das auch die ^-Methode 4 liefert. Mit 
Hilfe der vorliegenden Methode lassen sich darüber 

hinaus noch Aussagen über die relativen TC- und 
(^-Antibindungseffekte machen. 

Die Äquivalenz der -Methode 4 mit dem vor-
liegenden Verfahren zeigt sich bei Systemen niederer 
Symmetrie deutlich. Beide Methoden benutzen Sym-
metriefunktionen des Ligandensystems. Während in 
der ^-Methode nur der Funktionswert in bestimm-
ten, nämlich den Ligandenrichtungen betrachtet wird 
(Kontakttermmodell), schließt das vorliegende Ver-
fahren die integrale Wechselwirkung der durch 
Symmetrierestriktionen in ihrer Zahl beschränkten 
Funktionen des Zentralatoms und der Liganden ein. 
Da bekanntlich der Funktionswert in einer gegebe-
nen Richtung mit den Transformationseigenschaften 
dieser Funktion bezüglich dieser Richtung abgesehen 
von den Normierungsfaktoren in enger Beziehung 
steht, erhält die .^-Methode durch das vorliegende 
Verfahren eine bessere Grundlage, die im Rahmen 
der LCAO-Theorie vor allem gruppentheoretisch be-
gründet ist. Weiterhin ist zu beachten, daß die 
^-Methode wegen der MuLLiKENschen Näherung 5 

für die Nichtdiagonalelemente den Antibindungs-
charakter durch Überlappungsintegrale beschreibt. 
Durch die vorliegende Arbeit entfällt diese Ein-
schränkung. Hier werden die Eigenschaften der 
Nichtdiagonalelemente (^M » H Wh) hei Transforma-
tion der Zentralfunktionen direkt betrachtet, die mit 
denen der Überlappungsintegrale identisch sind. 

Mathematischer Anhang 

1. Nach der WiGNERschen Definition sind all-
gemein die Darstellungsmatrizen der Kugeldreh-
gruppe mit den Wellenfunktionen der Drehimpuls-
quantenzahl j wie folgt verknüpft: 

Ä Wim = I D>m'm Wim' • (29 ) 
m' 

Die Transformationseigenschaften der Kugelfunk-
tionen Yjm sind aber definiert 

Y}m(6', = 2 {M&)Ln> Yjm'(6, <£). (30 ) 
m' 

Die Verknüpfung der D]M'M-Matrix mit der (MS)}MM>• 
Matrix ergibt sich also einfach durch Transposition. 

2. Nach Gl. (5) erhalten wir die Zerlegungsmatrix 
aus der konjugiert Komplexen der Darstellungs-
matrix durch Ahnlichkeitstransformation mit lt. Aus 

deren Form bei W I G N E R (Anm. 7 , S. 182) ge-
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geben ist, wird mit der Basistransformation 

— 1/1/2 - i j ]/2 0 
11= 0 0 1 (31) 

1/1/2 -i/ ]/2 0 
die Zerlegungsmatrix 

3 ( 1 W , 7) = 
cos a cos ß cos y — sin a sin y — cos a cos ß sin y—sin a cos y cos a sin ß 
sin a cos ß cos y + cos a sin y — sin a cos ß sin y + c o s a cos y sin a sin ß 

— sin ß cos y sin ß sin y cos ß 
(32) 

Diese Matrix, ebenso wie die für d-Funktionen 
3 ® ? dürfte auch für andere Probleme in der MO-
LCAO-Theorie interessant sein. Die Matrixelemente 
von 3 ' 2 ' (Zi ßi */) s i n d bezüglich der in Gl. (6) an-
gegebenen Tensorkomponenten 

421} = COS 2 a (1 + cos2 ß) (cos2 y -
— sin 2 a cos ß sin 2 y , 

4|> = l ys cos 2 a sin2 ß , 
z\y = — cos 2 a sin 2 7 + i cos 2 a sin2 ß sin 2 7 

— sin 2 a cos ß cos 2 7 , 
4 1 = £ cos 2 a sin 2 /? cos 7 — sin 2 a sin ß sin 7 , 
Zj5 = — 2 cos 2 a sin 2 ß sin 7 — sin 2 a sin ß cos 7 , 
4 l } = l /3 sin2 ( ^ - sin2 7) , 
z | = — i ]/3 sin2 /? sin 2 7, 
4V = - 2 ^ 3 sin 2 £ cos 7 , 
4 s = i V'3 sin 2 ß sin 7 , 

1 

zj}2) = — ̂  sin 2 a sin2 ß cos 2 7 + sin 2 a cos 2 7 
+ cos 2 a cos ß sin 2 7 , 

232 = £ Ü3 sin 2 a sin2 

4|} = — i sin 2 a sin 2 7 (1 + cos2 /?) 
+ cos 2 a cos /? cos 2 7 , 

234) = 7 sin 2 a sin 2 /? cos 7 + cos 2 a sin ß sin 7 , 

= — i sin 2 a sin 2 /? sin 7 + cos 2 a sin ß cos 7 , 

Z4P = — .7 cos a sin 2 /? + cos a sin 2 ß sin2 7 
+ sin a sin /? sin 2 7 , 

z42 = 2 cos a sin 2 ß, 

2(4|j = ^ cos a sin 2 /> sin 2 7 + sin a sin /? cos 2 7 , 

Z44 = — sin a cos sin 7 + cos a cos 2 /? cos 7 , 

245 = — sin a cos ß cos 7 — cos a cos 2 ß sin 7 , 

Z(52) = — i- sin a sin 2 ß + sin a sin 2 ß sin2 7 
— cos a sin /3 sin 2 7 , 

Z52 = o V3 sin a sin 2 ß , 

= i sin a sin 2 ß sin 2 7 — cos a sin ß cos 2 7 , 

4|} = sin a cos 2 ß cos 7 + cos a cos sin 7 , 

z'55* = — sin a cos 2 sin 7 + cos a cos ß cos 7 . 
(33) 

Mit Hilfe der Matrizen Gl. (32) und (33) lassen 
sich also die p- und d-Atomfunktionen bezüglich 
jeder Richtung in Komponenten zerlegen, die durch 
die EuLERSchen Winkel a, ß, y gegeben ist. 

Herrn Dr. Ch. K . JORGENSEN danke ich vielmals für 
anregende Diskussionen. 


