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Prozesse im Hochstvakuum mit Hilfe dieser Vor-
stellungen nicht zu erkldren waren. INo, WaTANABE
und Ocawa deuteten die von ihnen beobachtete und
in dieser Arbeit bestitigte Herabsetzung der Epi-
taxietemperatur bei der Spaltung der Unterlage im
Hochvakuum (107¢ 1076 Torr) durch die
Annahme, dall das Metall auf extrem reinen Ober-
flichen kondensiert wird . Eine Uberpriifung der
Ergebnisse im Hochstvakuum (107 Torr) zeigte
aber, dal} diese Erkldrung nicht richtig sein kann. Es
gelang den genannten Autoren beispielsweise nicht,
vollstindig orientierte Kupferfolien auf Steinsalz zu
erhalten, obwohl bei Spaltung der Unterlagekristalle
bei diesen niedrigen Drucken die Spaltflachen sicher
frei von adsorbierten Stoffen sind ©.
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In dieser Arbeit konnte gezeigt werden, dal} bei
Anwendung der entwickelten Adsorptionsschicht-
hypothese ! 2 die auftretenden Effekte qualitativ ge-
deutet werden konnen. Insbesondere ist es moglich,
den Verlauf der Orientierungskurve bei Variation
aller Aufdampfparameter anzugeben.

Den Herren H. Worcast und P.Kocu danken wir
herzlich fir die sorgfdltige Prdparation und Vermes-
sung von Aufdampfschichten. Sie haben durch eine gro-
Bere Zahl von Versuchsreihen dazu beigetragen, die
Richtigkeit der Vorstellungen tiber den Einflul von Ad-
sorptionsschichten auf die Orientierung der Metallfolien
nachzuweisen.

6 S.Ino, D. Waraxase u. S. Ocawa, Vortrag auf dem Inter-
nationalen Kongrel3 fiir Kristallographie in Rom 1963 und
private Mitteilung.

Die Relationen zwischen den kubischen Ligandenfeldparametern
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Relations between different cubic ligand field parameters /1 are derived in the framework of
LCAO theory on the basis of group theory. From the symmetry of the ligand system and the trans-
formation properties of the d-orbitals, the values of the A parameters are related to the octahedral
parameter. These ratios A/Aoy , partially including 7- and d-antibonding effects, are — § for the
tetrahedron, — § for the cube, —3% for the tetradecahedron, +§ for the tetrakishexahedron and
triakisoctahedron when equal central atom ligand distances are considered. The proposed procedure,
including also lower symmetries, is compared with the .Z-method of Jercensen, Parpararpo and
ScamipTkE !, giving it a more developed physical significance.

Seit einiger Zeit ist das Verhaltnis der Kristall-
feldparameter 4=10 Dq, die nach Definition die
Grofle der Aufspaltung von d-Zusténden in kubischer
Symmetrie angeben, fiir den Oktaeder- und Tetra-
ederfall bekannt. Aus elektrostatischen Storungsrech-
nungen von Barruausen 2 ergibt sich im Falle glei-
cher Liganden und gleicher Abstinde zwischen dem
Zentralatom und den Liganden fiir beide Symmetrien
die Beziehung

Ara/don=—%. (1)

Das negative Vorzeichen bedeutet, dal} im Tetraeder
die Folge der Einelektronenterme umgekehrt ist.
Positives 4 heifit nach der Ubereinkunft, da} der

C. K. Jercensen, R. Pappararpo u. H.-H. ScumipTke, J.
Chem. Phys. 39, 1422 [1963].

C. J. Barruausen, K. Danske Videnskab. Selskab, Mat.-Fys.
C.J.Bariuauvsen, K. Danske Videnskab. Selskab, Mat.-Fys.
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dreifach entartete Term ts, (bzw. t; beim Tetraeder)
energetisch tiefer liegt als der andere Spaltterm e,
(bzw. e). In der Theorie der Molekiilzustande (MO)
spricht man in diesem Zusammenhang nicht von
Spalttermen der d-Niveaus, sondern von antibinden-
den Einelektronenzustinden, die o- oder (und)
a-Bindungscharakter haben und die, da beide Theo-
rien die Symmetrie des Molekiils enthalten, dieselbe
Terminologie (e, t, etc.) besitzen. Auch das Experi-
ment zeigt, daf} die Relation Gl. (1) gemeinhin er-
fullt ist 3.

Die obige Beziehung ergibt sich ebenfalls aus
der kiirzlich von JorceEnsen et al. entwickelten
Z-Methode 4. Dieses Modell benutzt zur Bestim-

3 Vgl. C.K. Jercensex, Absorption Spectra and Chemical
Bonding in Complexes, Pergamon Press, Oxford 1962,
S. 129 ff.

4 C. K. Jorcensex u. H.-H. Scamiptke, Z. Phys. Chem., N. F.
38, 118 [1963].
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KUBISCHE LIGANDENFELDPARAMETER

mung der Bahnenergiedifferenzen (orbital energy
differences) die Winkelanteile von Funktionen des
Zentralatoms, die symmetrieadaptierten Liganden-
funktionen und die aus der MO-LCAO-Theorie und
der MuLuikenschen Niherung ® abgeleiteten An-
nahme, daB der o-Antibindungscharakter eines Ein-
elektronenmolekiilzustandes dem Quadrat des Uber-
lappungsintegrals zwischen Zentralatom- und Ligan-
denfunktion proportional ist.

Da alle genannten Theorien im Rahmen der MO-
LCAO-Niherung (auch die Kristallfeldtheorie kann
als eine ihrer Grenzfille angesehen werden) die
Punktsymmetrie des Molekils und die Trans-
formationseigenschaften der Zentralatomfunktionen
gleichermaflen enthalten, kann gefolgert werden, daf3
sich relative Aussagen, wie etwa die in Gl. (1), auch
aus gruppen- und darstellungstheoretischen Betrach-
tungen allein ergeben. In der vorliegenden Arbeit
wird gezeigt, daf} aus Symmetriebetrachtungen und
aus den Matrizen der irreduziblen Darstellungen der
Kugeldrehgruppe die obige Beziehung leicht abgelei-
tet werden kann und daf} sie auch dann gilt, wenn
7- und 0-Bindungseffekte wirksam sind. Fiir andere
kubische Symmetrien (Wiirfel, Kubo-Oktaeder,
Tetrakishexaeder etc.) ergeben sich dhnliche Rela-
tionen. Daneben sollen Beziehungen zwischen der
vorliegenden Arbeit und der Z-Methode, die zu-
néchst nur fiir 6-Wechselwirkungen entwickelt wurde,
aufgezeigt und diskutiert werden. Beide Verfahren
erweisen sich formal besonders fiir niedere Symme-
trien und unter gewissen Bedingungen als identisch.
Dadurch erhilt die =Z-Methode, die auf Grund von
gewissen, die Rechnung vereinfachenden Modellvor-
stellungen konzipiert wurde, eine bessere physika-
lische Begriindung.

Bindungscharakter

Um den in dieser Arbeit verwendeten Begriff des
o-, - und O-Bindungscharakters (oder -effekts) zu
erldutern, beginnen wir zum besseren Verstindnis
mit dem einfachen, allgemein bekannten Fall einer
Zerlegung von p-Funktionen in bestimmte Rich-
tungen. Abb. 1 erklart die Zerlegung einer p-Funk-
tion bei Auszeichnung einer in der zy-Ebene ge-
legenen Richtung L und zeigt die Analogie zu einer

5 R. S. MurLikey, J. Phys. Chem. 56, 295 [1952].
6 M. E. Rosg, Elementary Theory of Angular Momentum,
John Wiley, New York 1957.
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Abb. 1. Die Zerlegung einer p-Funktion in der z—y-Ebene
beziiglich einer Richtung L und die analoge Vektorzerlegung.

entsprechenden Vektorzerlegung. Der analytische

Ausdruck hierfiir lautet bekanntlich
Pz=PoCOSE—pzsine. (2)

Wir sagen nun, die Funktion p, habe beziiglich der
durch den Winkel ¢ gegebenen Richtung cos? ¢ 6- und
sin? ¢ 71-Bindungscharakter. Die p,-Funktion zerlegt
sich entsprechend nach

Py =DPosSIin €+ pacos €. (3)

Die aus Gl. (2) und (3) gebildete unitare Matrix ist
aber gleich der Reziproken einer Transformations-
matrix, die sich aus der Drehung des z, y-Achsen-
kreuzes um den Winkel ¢ im mathematisch positiven
Sinn ergibt. Ensprechendes gilt fiir die dreidimensio-
nale Matrix, die bei Zerlegungen im Raum entsteht.
Diese Matrix lafit sich leicht mit der dreidimensiona-
len Darstellung D der Kugeldrehgruppe in Zu-
sammenhang bringen. Nach Rosk ¢ liefert die durch
die EuLerschen Winkel a, 8, y gegebene Drehung R
(a, B, 7), angewandt auf die reelle Basis p., p, , p-»
eine Matrix I, die bis auf eine Ahnlichkeitstrans-
formation ;=1 M U1 mit der transponierten,
von WiGNer 7 definierten Darstellungsmatrix DL,
identisch ist. Die unitire Transformation 1l ist durch
den Wechsel der Basis von komplexen zu reellen
Funktionen gegeben (s. mathematischen Anhang).
Gleichermaflen wird mit den d, f, ...-Funktionen
verfahren. Die Zerlegung der d-Funktionen durch
Auszeichnung einer Richtung liefert den -, 7z- und
0-Bindungscharakter einer solchen Funktion. Die
5-dimensionale Zerlegungsmatrix 3 findet man aus
der Darstellungsmatrix D® durch Transposition,
Ahnlichkeitstransformation mit 1l und anschlieBen-
der Inversion. Allgemein gilt

MDD =DGY, (Transposition),
MO =UTMAPU  mit y,=Urp,
Q0 = [MD] 1, (4)

7 E. Wiener, Gruppentheorie und ihre Anwendung auf die
Quantenmechanik der Atomspektren, Vieweg, Braunschweig
1931.
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Daraus ergibt sich
B(i)= [UTDD' U] 1 =U"1DO*1T, (5)

da D) eine unitire Matrix ist. Die Zerlegungsmatrix
lafit sich also formal recht einfach durch die WicNER-
sche Darstellungsmatrix ausdriicken. In der Praxis
bereitet die Durchfilhrung der Ahnlichkeitstrans-
formation fiir j = 2 wegen der hoheren Dimensionen
der Matrizen einige Schwierigkeiten. Im Falle der
d-Funktionen geht man deshalb zweckméafiger von
den Transformationseigenschaften eines Tensors
zweiten Grades mit den Komponenten T; aus. Die
Ausreduktion ergibt neben dem totalsymmetrischen
und dem schiefen Tensor einen weiteren, dessen
Komponenten eine irreduzible Darstellung induzie-
ren, die mit ®? dquivalent ist. Bekanntlich sind die
reellen fiinf d-Funktionen Komponenten eines irre-
duziblen, symmetrischen Tensors zweiten Grades.
Wihlt man die Tensorkomponenten so, wie die
Winkelanteile der d-Funktionen, namlich

v =3V15(22—y?)/r3,
Yam V(2= 22— by, (©)
vy=V15zy/r%, y,=V15z2/r%, ws=V15yz/r,

so errechnet sich die Matrix 3® mit Hilfe der Zer-
legungseigenschaften von z, y, z, die durch die
Matrix 3@ [s. Gl. (32) im Anhang] gegeben sind.
Die explizite Zerlegungsmatrix fiir d-Funktionen in
Abhingigkeit von den EuLerschen Winkeln a, f, 7,
die auch fiir andere Probleme interessant sein diirfte,
ist im mathematischen Anhang angegeben. Durch sie
wird die Zerlegung der Funktionen Gl. (6) beziiglich
einer durch a, 5, y gegebenen Richtung angegeben,
bei der zwei Komponenten o- und gleichzeitig -Bin-
dungen (die Quantenzahl 4 der Drehimpulskompo-
nente ist nicht definiert), zwei andere «z-Bindungen
und die letzte Komponente reine 6-Bindungen bilden
konnen. Die Quadrate der Matrixelemente 2D, sind
ein MaB fir den Bindungscharakter oder, wenn die
Molekilfunktion antibindend ist, fir den Anti-
bindungscharakter. Das Quadrat ergibt sich durch
die Energieintegrale, die im Einelektronenbild die
Funktion quadratisch enthalt. Nichtdiagonalterme
entfallen wegen der Orthogonalitat der Funktionen,
solange bei Ausreduktion von D) jede Rasse nur
einmal vorkommt. Weiterhin gilt wegen der Normie-
rungsbedingung

N =1 fiir jedes m’. (7)

m
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Die Summe iiber die moglichen Bindungscharaktere
ist also 1. Dabei muf} auf die Einschrankung hin-
gewiesen werden, daf} eine Funktion besonders mit
héherem j beziiglich einer Richtung gleichzeitig Bin-
dungen verschiedenen Charakters eingehen kann.
Diese Bindungen werden nur dann betétigt, wenn
der Bindungspartner besetzte Funktionen passender
Symmetrie anbieten kann.

Soweit die Betrachtung der Eigenschaften der
Zentralatomfunktion. Wenden wir uns nun ihrer
Umgebung zu. Bisher haben wir nur eine Richtung
ausgezeichnet. Gehen wir jetzt iiber zu dem Fall
mehrerer solcher Richtungen, wie es fur die Theorie
der Komplexverbindungen interessant ist. Die Frage,
welche Funktionen bei gegebener Koordinationszahl
und Symmetrie kombinieren kénnen, beantwortet die
Gruppentheorie. In den Tabellen von Eisexsreix 8
sind nicht nur die irreduziblen Darstellungen an-
gegeben, die durch s-, p-, d- und f-Funktionen bei
Reduktion der Symmetrie induziert werden, sondern
es sind auch die 0- und 7-Funktionen des Liganden-
systems ausreduziert. Tab. 1 stellt eine solche Reduk-
tionstabelle fiir das Oktaeder (Gruppe Oy, Koordi-
nationszahl K.Z. =6) dar. Am Beispiel der d-Elek-

alg agg €z tig tog aju asy ey tiy tou
s 1 0o o0 O o0 o0 o0 o0 0 o0
P O o0 0 0 0 0 0 0 1 o0
d 0 0 1 0 1 O o0 o 0 0
f O 0 0 o0 0 0 1 o0 1 1
o 1 0 1 O o0 o0 0 o0 1 o0
7 0O 0 o0 1 1 0 0 0 1 1

Tab. 1. Reduktionstabelle fiir die Gruppe Oy und K.Z.=6.

tronen ist ersichtlich, daf} die beiden e,-Funktionen
»reine“ o-Bindungen und die drei ts.-Funktionen
»reine” zt-Bindungen bilden. Unter ,,rein® wird hier
verstanden, dal} die e,-Zustinde keine 7-Bindungs-
anteile, die ts,-Zustinde keine ¢-Bindungsanteile ent-
halten. Beide kénnen jedoch noch 6-Bindungen ein-
gehen, was aus der Tabelle nicht ersichtlich ist. Beim
Wiirfel (Tab. 2) enthalten die to,-Funktionen o- und
n-Bindungsanteile, die e,-Funktionen sind dagegen

a1g asg eg tig teg ajy azu eu tiu teu
6 1 0 0 0 1 0 1 0 1 0
1 0 0 1 1 1 0 0 1 1 1

Tab. 2. Reduktionstabelle fiir die Gruppe Op und K.Z.=8
nach Eisexsteiy &

8 J. C. Eisenstely, J. Chem. Phys. 25, 142 [1956].
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nur 7z-bindend. Andere Fille werden spiter unter
den verschiedenen Symmetrien gesondert diskutiert.

Damit ist die Frage geklart, welche Bindungsarten
wir fir eine Symmetrie und Koordinationszahl zu
erwarten haben und welcher irreduziblen Darstellung
(Rasse) sie angehoren. Weiterhin ist zu untersuchen,
wieviele Ligandenfunktionen gegebener Rasse mit
den Zentralatomfunktionen kombinieren. Beim Okta-
eder treten bei d-Elektronen jeweils nur N =4
Ligandenfunktionen an Stelle der moglichen 6 (K.Z.)
mit den ty,- und e,-Funktionen des Zentralatoms in
Wechselwirkung, und zwar in gleicher Weise. Zum
Beispiel kombiniert die Funktion ;=115 2y/r?
[Gl. (6)] nur mit 7-Ligandenfunktionen, die in den
vier Zentren auf der z, y-Ebene liegen. Gleiches gilt
fir die Funktion v;, nur dall es sich hier um
o-Ligandenfunktionen handelt. Die Funktion v,
kombiniert zwar mit allen 6 Ligandenfunktionen,
jedoch in unterschiedlicher Weise, wie die Symmetrie-
funktion zu e, zeigt

(1/V3) (0,4 0s— Y 05— $0,— L 05— & o) (8)

(bei Vernachlassigung der Liganden-Liganden-Uber-
lappung). Ihr o-Bindungscharakter ist jedoch wegen
der Entartung mit v, der gleiche. Infolgedessen defi-
nieren wir die Kombinationszahl N der Liganden-
funktionen, die mit den Zentralfunktionen gegebener
Rasse gleichartig kombinieren, stets als deren Mini-
mum. Fir das Oktaeder ergibt sich sowohl fiir den
Zustand e, als auch ty, NV =4. Beim Wiirfel sind die
entsprechenden Werte N =8 fiir e, und ts,. Da die
Zerlegung der Funktion mit Hilfe der Matrizen 31
beziiglich aller Koordinationsstellen bei kubischer
Symmetrie gleichartig erfolgt, muB der oben defi-
nierte Bindungscharakter beziiglich eines Zentrums
einfach mit N multipliziert werden, um den gesamten
Bindungs- oder Antibindungseffekt fiir alle Zentren
zu erhalten. Damit werden Ligandenwechselwirkun-
gen untereinander vernachlassigt.

Somit ist das vorliegende Verfahren definiert, und
wir konnen als Beispiel nun spezielle Symmetrien
diskutieren.

Tetraedersymmetrie T,

Der Reduktionstabelle (Tab. 3) fiir tetraedrische
Koordination entnehmen wir, dal aus den d-Spalt-
termen Molekiilfunktionen resultieren, die einmal
reine 7-Bindungen (e), das andere Mal o- und
7-Bindungsanteile (t,) enthalten. Da es sich bei
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a as e t1 t2
S 1 0 0 0 0
P 0 0 0 0 1
d 0 0 1 0 1
f 1 0 0 1 1
o 1 0 0 0 1
4 0 0 1 1 1

Tab. 3. Reduktionstabelle fiir die Gruppe Tq und K.Z.=4.

den Ligandenfunktionen im wesentlichen um anti-
bindende Zustande handelt, erwarten wir die Niveaus
mit ¢-Bindungsanteilen im Termschema héher als
solche mit reinem 7-Bindungsanteil. Nach der in der
Einleitung gegebenen Festsetzung ergibt sich im
Falle des Tetraeders also ein negativer Kristallfeld-
parameter 4. Wenden wir uns nun der Frage zu, wie
gro} die o- und 7-Antibindungseffekte fiir Funk-
tionen der Rasse t, sind. Dazu zerlegen wir die finf
d-Funktionen Gl. (6) in der oben angegebenen
Weise. Fiihren wir etwa eine Zerlegung 3 mit dem
Winkelsatz a = — /4, f = 1/2, y = ¢ durch, der einer
Drehung der y-Achse in Richtung der Tetraederecke
No. 1 (s. Abb. 2) entspricht, ergibt sich nach Gl.(33)
folgende Matrix

Abb. 2. Der Wiirfel und

ein einbeschriebenes Te-

traeder (K.Z.=4), so da§

sich ihre Symmetrieachsen

in identischer Lage befin-
den.

B (a=—af4, p=n/2, y=¢)=
( 0 0 Vg\
0

(=)

_Vg
Vs sVz 0 o |. 9)
Vs V3
R

Diese Matrix ist in folgender Weise zu interpretie-
ren: Die ersten beiden Reihen gehoren zu den
e-Funktionen, die anderen drei zu den t,-Funktionen.
Die Elemente in den Spalten ergeben quadriert den
Bindungscharakter fiir die jeweilige Funktion. Expli-
zite bedeutet etwa die vierte Reihe die Zerlegung in

L
3
0
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| o] T Al
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Tensorkomponenten:

V15zz/rt= — 2 V15 (22— y'2)/r? :

3| 2
+7 V152 g} — l/; (V152" 2/r2}
+ Vs VI5y 21

Die Funktion 2"2-y2 hat beziiglich des Punktes 1 von
Abb. 2 o- und gleichzeitig 0-Bindungs- oder Anti-
bindungscharakter, die Funktionen z’y" und 'z’
haben reinen 7-Bindungs-, und 2"z" hat 6-Bindungs-
charakter. Die erste und zweite Spalte der Matrix
Gl. (9) ergeben - und 0-Bindungseffekte, die 3. und
5. Spalte z-Bindungseffekte, die 4. Spalte reine 0-Bin-
dungen. Der o-Antibindungseffekt fir die t,-Funk-
tionen ist also §, fiir die e,-Funktionen ist er er-
wartungsgemall gleich Null. Die z-Antibindungs-
effekte summieren sich fiir die t,-Funktionen ent-
sprechend zu {5 + & = §; fir die e;-Funktionen er-
gibt sich §. Wie ersichtlich, sind die Quadrate der
Matrixelemente fiir Funktionen gegebener Rasse
nicht alle gleich. Das hat Orthogonalititsgriinde.
Wegen der Entartung der zu derselben irreduziblen
Darstellung gehorenden Funktionen miissen alle Bin-
dungs- oder Antibindungsefiekte gleich sein. Es 1aft
sich auch leicht zeigen, dal} die Linearkombination
der ersten beiden Glieder der 2. Zeile von Gl. (9)

Vi B2 @2 —y®) i | H{V5 (2 - 12— by®) %)

(10)

in der Tat eine O-Funktion ist. In dhnlicher Weise
kann man die dritte Reihe der Matrix interpretieren.
Ebenfalls ist leicht nachzupriifen, dal Zerlegungen
durch Drehung der Achsen in andere Tetraederecken
gleiche oder dquivalente Matrizen ergeben, was sich
auch aus Symmetriegriinden ergeben muf}. Die Zer-
legung in ihre Komponenten erfolgt also fiir alle
Funktionen beziiglich aller Koordinationspunkte in
gleicher Weise. Zur Ermittlung des gesamten Bin-
dungscharakters ist mit der oben definierten Zahl N
der Ligandenfunktionen zu multiplizieren, die mit
den Zentralfunktionen kombinieren. Sie ist fiir o-
und 7-Bindungen jeweils N =4 (vgl. die Symmetrie-
funktionen bei WorrsBerc und HeLmuorz ?) und ist
damit der entsprechenden Zahl des Oktaeders gleich.
Hierdurch erhalten die Matrixelemente Gl. (9) eine

¢ M. WorrsBerc u. L. Heumnorz, J. Chem. Phys. 20, 837
[1952].
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zusitzliche Bedeutung. Die Quadrate dieser Elemente
reprasentieren damit gleichzeitig das Verhiltnis der
gesamten Antibindungseffekte fiir das Tetraeder im

Vergleich zum Oktaeder. Es ergibt sich also bei Be-
tatigung von reinen o-Bindungen:

Aa/ Ao = — 4. (11)
Nach der MO-Definition des Kristallfeldparameters

A, der gleich der Energiedifferenz von antibindenden
6*- und 7*-Bahnen ist, gilt fiir das Oktaeder

MBi = (6" —a*) N (12)

(mit 0%, 7% bezeichnen wir gleichzeitig die Bahn-
energien — orbital energies). Entsprechend wird bei
Bildung von lockernden - und z2-Bindungen fiir das

Tetraeder nach Gl. (9)
157 = — (40" + §a*—§a7) N= — § (0" —a") N,

(13)

so dafl auch unter Beriicksichtigung von z-Anti-
bindungseffekten der Faktor — ¢ erhalten bleibt.
Gleiches gilt auch fiir 0-Bindungen. Wenn wir gleiche
Kombinationszahlen N fiir e- und t,-Funktionen vor-
aussetzen, so zeigt es sich, daf} zwar die Differenz
aus der reinen 0-Komponente nach Spalte 4 der
Matrix Gl. (9) Null ergibt, jedoch erhalten wir fir
d-Antibindungseffekte, die aus Spalte 1 und 2 mit
den 0-Bindungen gemeinsam resultieren, wieder den
Faktor — #. Damit gilt die Gleichung
A3 4570 = — §

(14)

allgemein bis zur hochst moglichen Bindungsform,
die eine d-Atomfunktion zu bilden vermag. Zum glei-
chen Ergebnis kommt eine erweiterte =-Methode 1°.

Wiirfel, Tetrakishexaeder, Triakisoktaeder

Mit den Ergebnissen, die wir bei der Diskussion
des Tetraeders gewonnen haben, lassen sich nun
leicht die entsprechenden Kristallfeldparameter fir
den Wiirfel (K.Z = 8), das Tetrakishexaeder und das
Triakisoktaeder (K.Z.=14), letztere unter der Vor-
aussetzung gleicher Ligandenabstinde, ableiten. Den
Wiirfel konnen wir als zwei ineinandergestellte Tetra-
eder betrachten (s. Abb. 2). Die zugehorige Punkt-
gruppe ist Oy . Aus Tab. 2 ist ersichtlich, dal die
ec-Zustinde 7-, die ts, ebenso wie beim Tetraeder
o- und 7t-Charakter haben. Die Zerlegungsmatrizen

10 C. K. Jorcensex u. C. Scuaerrer, Mol. Phys., im Druck.
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sind natiirlich dieselben; nur die Kombinations-
zahlen Ny sind, wie oben ausgefiihrt, fiir e,- und
ta.-Bahnen doppelt so hoch wie beim Tetraeder und
Oktaeder. Damit ergibt sich unter Beriicksichtigung
aller moglichen Antibindungseffekte

Aw/Aon= — $ Nw/Non= — §. (15)
Das Tetrakishexaeder und das Triakisoktaeder
(K.Z.=14, Abb. 3a und b) gehoren zur Punkt-

gruppe Oy . In beiden Féllen sind sowohl die e,- als
die tp,-Funktionen o-, z- und d-bindend. Man kann

Abb. 3. Tetrakishexaeder (a) und Triakisoktaeder (b)
(K.Z.=14).

die Korper sich zusammengesetzt denken durch In-
einanderstellen eines Wiirfels und eines Oktaeders.
Im allgemeinen ist die Koordination jedoch zwei-
parametrig, da die Entfernung vom Schwerpunkt zu
den Wiirfel- bzw. Oktaederecken verschieden grof}
sein kann. Fiir den Sonderfall gleicher Abstande lafit
sich ebenfalls eine Verhiltnisgleichung angeben. Be-
trachten wir o- und 7-Antibindungseffekte gleich-
zeitig, so ergibt die Bahnenergie mit den Kombina-
tionszahlen N =4 fiir die Oktaeder- und N =8 fiir
die Wiirfelecken

Eeg=40*+83%7",

Etoe=47*+8 37"+ 8% 0"
Der Ligandenfeldparameter fiir das Tetrakishexaeder
oder Triakisoktaeder ist dann

Arin=Eeg —Ey=13% (40" —4a%). (16)
Mit Hilfe von Gl. (12) ergibt sich damit
Aren/Aon=+ % . (17)

Fiir 0-Bindungseffekte lassen sich dhnliche Uber-
legungen anstellen. Wir wollen jedoch darauf nicht
naher eingehen, da diese, wenn sie tatsdchlich auf-
treten, ohnehin klein sind. Bei ungleichen Abstidnden
zwischen Zentralatom-Ligand fiir den Wirfel- und
Oktaederteil des Tetrakishexaeders und Triakisokta-
eders ergibt sich entsprechend

Agn/Aon =1 — § (6 — 7yw)/(00n — (18)

%
TTon) -

Fiir den Sonderfall

* * * *
(ow — aw)/(Gon — 7on) = §

ist der Kristallfeldparameter Apy, =05 es liegt dann
eine zufillige Entartung der e,- und ts.-Funktionen
vor, oder man sagt, die Symmetrie ist beziiglich der
d-Funktionen pseudosphirisch.

Kubo-Oktaeder

Das Kubo-Oktaeder (Tetradekaeder) gehort eben-
falls zur Punktgruppe Oy, , die Koordinationszahl ist
K.Z.=12 (s. Abb.4). Nach der Reduktionstabelle
(Tab. 4) haben beide d-Spaltterme e,, ts, 0- und
71-Antibindungscharakter.

3

B
PRI
L]

Abb.4. Das in einen Wiir-
fel einbeschriebene Kubo-

2 Oktaeder (K.Z.=12).

ajg azg eg tlg t)g alu aau ey tiu teu
G 1 0 1 0 1 0 0 o0 1 1
/4 0 1 1 2 1 0 1 1 2 1

Tab. 4. Reduktionstabelle fiir das Kubo-Oktaeder
nach Lienr 1

Die Zerlegungsmatrix Gl. (33) im Anhang liefert
fir die Winkel =0, = — /4, y =0, wodurch die
z-Achse in Richtung des Punktes 3 in Abb. 4 gedreht
wird,
et V5(22— 32— Ly?

V3 | Vla 2
112 @

=
y'?)/r?

~ by + V15 %)

Der o-Antibindungseffekt ist also beziiglich einer
Richtung % + {5 = 1 . Da die ts,-Funktionen jeweils
mit vier Koordinationsstellen voll in o-Wechsel-
wirkung treten, ergibt sich mit den Kombinations-
zahlen NV =4 fiir ty, und N =8 fiir e, fiir das Kubo-
Oktaeder

(19)
} +%{1/5(z'2— 122

Mxo=3}-80*—1-40*=—20"  (20)

11 A.D. Lienr, Progr. Inorg. Chem. 4, 455 [1962].
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und A%o/Aon = —20*[40*= — %.

(21)

Die Frage, ob - und d-Antibindungseffekte den glei-
chen Faktor wie in Gl. (21) ergeben, a6t sich wegen
der fehlenden Linearkombinationen der Liganden-
funktionen fiir solche Wechselwirkungen nicht ohne
weiteres beantworten. '

Symmetrien von der Art eines Kubo-Oktaeders
mit der Koordinationszahl K.Z. = 12 sind durch Ver-
bindungen ABg (AuCuy-Typ) realisiert 12. Bei metal-
lischen Elementen liegen Kubo-Oktaeder in kubisch
dichtesten Kugelpackungen vor. Ebenso ist in UB,
und ZrB,, kubo-oktaedrische Koordination beobach-

tet worden 13.

Rhombendodekaeder

Das Rhombendodekaeder (K.Z.=14) ist ein wei-
terer Fall eines zweiparametrigen kubischen Korpers
der Symmetrie Oy . Sechs Punkte liegen auf den
Oktaederpositionen, die acht weiteren in anderer
Entfernung zum Zentralatom auf den Mitten der
halben Raumdiagonalen des zugehorigen Wiirfels

(vgl. Abb. 5). Wegen der ungleichen Abstinde

Abb. 5. Rhombendodekaeder
(K.Z.=14).

zu den Liganden lassen sich im Rahmen der vor-
liegenden Theorie keine quantitativen Aussagen
machen. Sowohl e,- als auch ty,-Funktionen haben
o- und 7-Antibindungscharakter. Vernachldssigen wir
die 7-Bindungseffekte, so erhalt man nach dem oben
dargelegten Verfahren

*
Ee, =4-00n,

ARD"= Eeg =S Et2g =4‘(0;h - % 0%) .

Et?g = 8 % o tv s
(22)
Da das Verhaltnis der Abstinde vom Zentralatom

zur Wiirfel- bzw. Oktaederkoordinationsstelle & /3
ist, gilt

Ow > 0o -
12 P. Niger1, Lehrbuch der Mineralogie und Kristallchemie,

Gebr. Borntraeger Verlag, Berlin-Zehlendorf 1941, S. 295.
13 I.R.Canox u. G.H.Durrey, J.Chem.Phys.35,1657[1961].

H.-H. SCHMIDTKE

Wir diirfen also annehmen, dal im Rhombendodeka-
eder die tyg-Niveaus wenig starker antibindend sind
als die eg-Zustdnde. Das heif3t

Arp <0 und klein.

Rhombendodekaedrische Koordination ist in der
Theorie der Borane von Interesse 14 15,

Niedere Symmetrie

Die hier diskutierte Methode 14t sich prinzipiell
auch auf Systeme niederer Symmetrie anwenden.
Jedoch zeigt es sich, dal} entweder die Interpretation
der Zerlegungsmatrizen zunehmend schwieriger wird
oder die Funktionen verschiedenartig mit den Ligan-
denfunktionen kombinieren, so dall die Heran-
ziehung symmetrischer Ligandenfunktionen in expli-
ziter Form erforderlich wird. Wir wollen die Ver-
héltnisse am Beispiel der Symmetrie Dy, mit K.Z. =5
(trigonale Bipyramide) studieren, fiir die eine Dis-
kussion mit Hilfe der Z-Methode schon vorliegt .
Aus der Eisensteinschen Reduktionstabelle 8 (Tab. 5)

N
N

a’ as e ap as

0
0
0

QQ kg @
Co O~ |
—HOoOOOO
B et et et O
(=]
O O

MO~ | @

Tab. 5. Reduktionstabelle fiir die trigonale Bipyramide,
Gruppe Dsn, K.Z.=5.

ist ersichtlich, daB die d-Spaltterme a,” reinen
o-Charakter, " 0- und 7- und e” nur nt-Antibindungs-
charakter haben. Die d-Funktionen aus Gl. (6) trans-
formieren sich mit der durch Abb. 6 gegebenen An-

Abb. 6. Trigonale Bipyramide
(K.Z.=5).

14 R, Horrmany u. W. N. Lipscoms, J. Chem. Phys. 36, 2179
[1962].

15 R. HorrMaxy u. M. Goutermaxn, J. Chem. Phys. 36, 2189
[1962].
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ordnung der Koordinaten nach den irreduziblen Dar-
stellungen

" Yy Y5 (23)

Nach Tab. 5 gibt es zwei Ligandenfunktionen der
Symmetrie a,’. Eine, die Funktionen an den Punk-
ten 4 und 5 in Abb. 6 linear kombiniert und nur
o-antibindend ist, und eine andere, die Funktionen
der Zentren 1, 2, 3 verkniipft und ¢- und J-anti-
bindend ist. Aus der Storungstheorie folgt, daf beim
Kombinieren mehrerer Funktionen gleicher Rasse
mit der Zentralfunktion einfach die Summe der Bin-
dungseffekte fiir das Gesamtsystem anzusetzen ist.
Die Funktion w; in Gl. (23) kombiniert mit den
beiden Punkten 4 und 5 in einfachen o-Wechsel-
wirkungen, beziiglich der Punkte 1, 2, 3 ergibt eine
oben beschriebene Zerlegung (2 =0, f=7/2, y=0)

yim— V52— 12— by )
1B oy

F 4 4 ’
QY5 el Ye, Y3 €

(24)

Der o-Antibindungscharakter ist also 1. Mit den
Kombinationszahlen N, ;=2 und Ny, 3=3 wird
der gesamte o-Antibindungscharakter des Komplexes
fir

’ *
a0y

1-3+1-2=14 (25)
Betrachten wir nun die e’-Funktionen, so kommt die
schon erwihnte Schwierigkeit hinzu, daf} die Zentral-
funktionen wegen der niederen Symmetrie verschie-
den mit den Ligandenfunktionen kombinieren. Es ist
also notig, die explizite Symmetriefunktion der
Ligandenatomfunktionen zu beriicksichtigen. Sie lau-
tet etwa V/2/3 (03— % 6, — $ 0,). Eine Zerlegung mit
a=a/3, f=y=0 liefert

py=Viszy= V3 V15 (72 v/ |

212
— {152y}, (26)
Die Funktion v hat also beziiglich Punkt 3 in Abb. 6
3 ¢-und 1 7- Antibindungscharakter Da Punkt 3 voll
und Punkt 1 und 2 nur je zu ¥ mit der Zentralfunk-
tion kombinieren, wird der gesamte o-Antibindungs-
charakter des Komplexes fiir

4

¢: w=30+1+1)=%. (27

Das Verhiltnis der o-Antibindungscharakter von a,”
in Gl. (25) und €" in Gl. (27) ergibt sich also zu
Oa/0er =%, (28)

ein Ergebnis, das auch die Z-Methode * liefert. Mit
Hilfe der vorliegenden Methode lassen sich dariiber
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hinaus noch Aussagen iiber die relativen z- und
0-Antibindungseffekte machen.

Die Aquivalenz der Z-Methode ! * mit dem vor-
liegenden Verfahren zeigt sich bei Systemen niederer
Symmetrie deutlich. Beide Methoden benutzen Sym-
metriefunktionen des Ligandensystems. Wahrend in
der Z-Methode nur der Funktionswert in bestimm-
ten, namlich den Ligandenrichtungen betrachtet wird
(Kontakttermmodell), schlieft das vorliegende Ver-
fahren die integrale Wechselwirkung der durch
Symmetrierestriktionen in ihrer Zahl beschrankten
Funktionen des Zentralatoms und der Liganden ein.
Da bekanntlich der Funktionswert in einer gegebe-
nen Richtung mit den Transformationseigenschaften
dieser Funktion beziiglich dieser Richtung abgesehen
von den Normierungsfaktoren in enger Beziehung
steht, erhalt die Z-Methode durch das vorliegende
Verfahren eine bessere Grundlage, die im Rahmen
der LCAO-Theorie vor allem gruppentheoretisch be-
grindet ist. Weiterhin ist zu beachten, daf} die
Z-Methode wegen der MuLrikexschen Naherung 5
fir die Nichtdiagonalelemente den Antibindungs-
charakter durch Uberlappungsintegrale beschreibt.
Durch die vorliegende Arbeit entfallt diese Ein-
schrankung. Hier werden die Eigenschaften der
Nichtdiagonalelemente (yy, H y1) bei Transforma-
tion der Zentralfunktionen direkt betrachtet, die mit
denen der Uberlappungsintegrale identisch sind.

Mathematischer Anhang
1. Nach der Wicnerschen Definition sind all-

gemein die Darstellungsmatrizen der Kugeldreh-
gruppe mit den Wellenfunktionen der Drehimpuls-
quantenzahl j wie folgt verkniipft:

Ryjm= ZDZn’rn Yim' - (29)
m

Die Transformationseigenschaften der Kugelfunk-
tionen Y}, sind aber definiert

ij(@,a ¢’) = Z (Ms);n7n’ J'm'(@s D). (30)

m

Die Verkniipfung der D}, ,,-Matrix mit der (M)
Matrix ergibt sich also einfach durch Transposition.

2. Nach Gl. (5) erhalten wir die Zerlegungsmatrix
aus der konjugiert Komplexen der Darstellungs-
matrix durch Ahnlichkeitstransformation mit 11. Aus
DD, deren Form bei WicNer (Anm. 7, S. 182) ge-
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geben ist, wird mit der Basistransformation

~1Y2 —ilv2 o
n= 0 0 1

1/v2  -ify2 0
die Zerlegungsmatrix

3D (e B.7) =

cos a cos f cos y—sin a sin y — cos a cos f sin y—sin a cos y cos a sin £
sin a cos f cos y+cos a sin y — sin a cos £ sin y+cos a cos y sin a sin §
—sin £ cos y sin £ sin y cos

(32)

Diese Matrix, ebenso wie die fiir d-Funktionen
3@, diirfte auch fiir andere Probleme in der MO-
LCAO-Theorie interessant sein. Die Matrixelemente
von 3@ (a, f,7) sind beziiglich der in Gl. (6) an-

gegebenen Tensorkomponenten

(31)

2% =cos2a(l +cos? ) (cos®y — 3)
—sin2acosfisin2y,

22 =%V3 cos2asin?f,

2% = —cos2asin2y+ }cos2asin®fsin2y
—sin2acosficos2y,

.zﬁ):%cos2asin2ﬁcosy—sin2aSinﬂSiny’

2% = —1cos2asin2Bsiny —sin2asinfcosy,

2D =V3sin?f(4 —sin?y), 2@ =1-3sin?p,

22 = — 1 Y3 sin2Bsin2y,

2% = — 11/3sin2pfcosy,

2% = L VY3sin2fsiny,

KUBISCHE LIGANDENFELDPARAMETER

2 = — L sin2asin®fcos2y+sin2acos2y
+cos2acosfisin2y,
23 = § V/3sin2asin? B,
2% = — }sin2asin2y(1+cos?f)
+cos2acosfcos2y,
2%} = L sin2asin2 fcosy+cos2asinfsiny,
22 = — Lsin2asin2 fsiny +cos2asinfcosy,
23 = — L cosasin2 f+cosasin2 fsin2y
+sinasin fsin2y,
2% =+ V3 cosasin2f,
3 = L cosasin2fsin2y+sinasinfcos2y,
Z% = —sinacosfsiny+cosacos2fcosy,
Z% — —sinacosffcosy —cosacos2 fisiny,
23 = — Lsinasin2f+sinasin2 fsin?y
—cosasinfisin2y,
#% = 113 sinasin2f,
7% = L sinasin2 fsin2y —cosasinffcos 2y,
5

22) =sinacos2 fcosy+cosacosfsiny,

(2 . .
255 = —SInCZCOSZﬁSln;’+COSlCOSﬂCOS]/.

L
=

(33)

Mit Hilfe der Matrizen Gl. (32) und (33) lassen
sich also die p- und d-Atomfunktionen beziiglich
jeder Richtung in Komponenten zerlegen, die durch
die EvLerschen Winkel a, 3, y gegeben ist.

Herrn Dr. Ch. K. Jorcexsex danke ich vielmals fir
anregende Diskussionen.



